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1. INTRODUCTION

In weapon testing operations, the coordinates of the burst point of an artillery shell are
obtained by visual observations using special theodolites that are placed on observation
towers (see Roberts 1990 and 1991). The data consist of observed azimuths and elevations of
the burst point and the ensuing regression problem is a classic problem of geodesy. Roberts
(1991) describes a special treatment of the problem, whereby only the azimuth observations
are used to compute the ground coordinates of the burst point. However, the elevation
measurements do contribute to the determination of the ground coordinates and should not
be ignored. This report describes the treatment of the complete data set in accordance with
the least-equares principle whereby the sum of the squared corrections of all angle
observations is minimized.

2. BURST-POINT MEASUREMENT PROCESS

To obtain the coordinates of the burst point of an artillery shell, the direction to the
burst is measured from a number of observation towers using special theodolites. The
observations provide the azimuth and elevation of the burst point. The coordinates of the
burst point can be computed from these data if observations from at least two towers are
available. In Section 3 we present a least-squares method for this task. The result of the
calculations includes estimates of the burst-point coordinates, standard deviations of the
coordinates, and correlation coefficients between the coordinates. A typical geometrical
arrangement of observation towers and weapon is such that sizable correlations between the
coordinate estimates can be expected. Therefore, it is important to have estimates of the
correlation coefficients, in particular if an average burst point from various shots is to be
calculated, because the variances and covariances of single-shot coordinates enter into the
calculation of the average point.

From the coordinates of the burst point, coordinates of the cannon, and the firing
direction (defined by an azimuth angle ¢,), we compute the range, deflection, and firing
range of the cannon. These quantities are defined as follows (see Figure 1):

Range: The range r is the distance between the cannon and the projection of the
burst point onto the level plane. The projection is called the impact point.

Deflection: The angular deflection 6 is the angle between the firing direction and the
direction from the cannon to the impact point. The metric deflection d is
defined by




impact point

Matric
defiection

Cannon X—axis

Figure 1. Definition of range and deflection
d=rsind . : (1)
Firing range: The firing range [ is the component of the distance (range) to the
impact point in the firing direction, or

f=rcosé . (2)

3. ESTIMATION OF BURST-POINT COORDINATES

Let the unknown coordinates of the burst point be (z,y,2) and the coordinates of the
t-th observation tower be (z,,y,,2). Let the observed azimuth and elevation be ¢, and 4,,
respectively, and let T be the number of observation towers. Then the following relations
can be read from Figure 2:
Burst zpoin'

Figure 2. Tower and burst-point coordinates.
9(b:z,9) =(z —z) tang, —(y —y)=0, t=12,.,T, (3)
and
h(b;z,y,2)=(z—2) —[(z —2)* +(y — y)*] tan26, =0 , t=1,2,..,.T. (4)
Equations (3) and (4) are the model equations of the regression problem. The regressands are

the angles ¢, and 6, t =1,...,T, the regressor variables are the tower coordinates (z,,y,,z),
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and the free model parameters are the burst-point coordinates (z,y,z). Let P, be estimated
variance-covariance matrices of the observations, and let c4, and c, be the corrections
(residuals) of the observations ¢, and 0,, respectively. Then the least-squares regression
problem can be formulated as follows:

. T e
Minimize W= ‘2_:1 (coercar) P [c::] ) (5)
subject to 9% + cgps 2,¥) =0,
and h‘(0‘+6“;3,y,2)=0 , t=1,2,...,T. (6)

This is a least-squares problem with constraints in the form of simultaneous equations. It
can be solved, for instance, with the help of the utility routine COLSMU (Celmigs 1979).
However, in the present case, some simplifications apply that allow one to use the simpler
routine COLSAC (Celmips, l.c.) for least-squares problems with scalar constraints. First, we
can assume that all angle observations are independent and have equal accuracies.
Therefore, the variance-covariance matrices P, in Eq. (5) can be set equal to unit matrices
and the objective function defined by

T T
W=M+%=g¢+§$. (7)
Second, because every equation in (6) contains only one scalar observable, the constraints can
be defined as the following 2T scalar equations:
g‘(¢¢+0“; z,y)=0 , t=l,2,.-.,T , (sa)
hi—g(bi-1 + co,4-1i 7,¥,2) =0 , ¢=T+1,T+2,...,2T. (8b)

Egs. (7), (8a), and (8b) define a least-squares problem with 2T observations, 2T scalar
constraints, and three parameters.

Roberts (1991) suggests for the solution of the regression problem a method that is
different from the outlined approach and does not provide the least-squares solution. To
show the difference between a least-squares solution and Roberts’ method, we first derive a
set of normal equations for the least-squares problem. We start by solving the constraint
equations (6) for the unknown residuals. The results are

Cyy = $; — arctan Z—i‘ , t=1,2,...,T ,
-
( (9)
z2—2z
cg =6, — arctan > : 217 t=1,2,...,T .
[(z =) +(y—u)*] J




Substituting these expressions into the objective function (7), we obtain

T — 2
w,=X% [¢, — arctan —— 2t J (10)
i=1 z—1
and
w,=% |0 ¢ A }2 (11)
= — arctan :
NS [(z —2)* +(y — 9)? |'2

Now the only unknowns in the objective function W = W, + W, are the free model
parameters z, y, and 2. We obtain equations for these parameters by setting equal to zero
the partial derivatives of W with respect to the unknowns. The ensuing system of normal
equations is

oW _ oWy | Wfaws)

dr Oz 0z !

aw IW,(z,y) & IWyz,y,2) |

5 " oy + % =0, (12)
aw _ 8W2(z,y,z) =0

32 - az - )

The least-squares values of z, y, and z are solutions of this system of equations. Numerically
solving Eq. (12) is equivalent to solving the least-squares problem (7) and (8) with the utility
program COLSAC.

Roberts (1991) solves, instead of the normal equation system (12), the following simpler
system:

\

an(zry) —
oz !
dW,(z,y)
dy
a W2(zry;z)
—07 0
0z

=0, ' (13)

/

This modification of the normal equation system is justified if one assumes that the
dependence of the azimuth angle 8 on the altitude z is negligible. The assumption might be
true for typical firing tests, but sufficient conditions for the assumption to hold have not been
elaborated. If the assumption is not true, then the solution of the modified set, Eq. (13), is
different from the least-squares solution. The magnitude of the difference is not known
Hence, because the complete set of normal equations, Eq. (12), provides the least-squares
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solution under all conditions, we see no reason to use the modified set. Roberts does not give
a reason for the neglect of the terms dW,/3z and 8W,/3y. Presumably, the terms were
removed to facilitate the numerical solution. However, the first two equations of the
system (13) constitute a system of simultaneous non-linear equations for z and y that cannot
be formally solved. Roberts obtained a numerical solution of that system by linearization
and iteration. He could have used the same numerical technique on the complete equation
system (12) and obtained the correct least-squares solution.

In the example presented in Section 5, the numerical solution of the modified Eq. (13) is
found to be different from the numerical solution of the complete Eq. (12).

A numerical solution of the general regression problem can be obtained also with the
help of commercial software for non-linear data fitting. Such a software typically requires
that each constraint equation contains exactly one regressand and that the constraints are
explicitly solved for the observations; that is, they must be of the type

bi=1i(X,B)+ey; (14)

where ; are the observations (the "regressand variables”), X; are fixed parameter vectors
(the "regressor variables”), § is a free parameter vector of the regression functions f;, and
cy; are the corrections (residuals) of the observations. In the present case, this form of
constraints can be obtained by solving Egs. (9) for the observations. (The utility routine
COLSAC does not mandate any particular constraint fc ‘mulation and accepts constraints in
the general form f;(¥;+cy;, X;, ) =0. Therefore, we used the simpler implicit
formulations (3) and (4) instead of Egs. (9) in our numerical calculations with COLSAC. ) As
an example of a commercial software, we chose the program 3R, Release 1990, of BMDP
Statistical Software, Inc. To comply with 3R, we expressed the constraints in the form of a
regression model as follows:

¢ i+, g =
Yy—v 1. zZ—2 .
= [ arctan ] i+ [ arctan ] i, + e (15)
— % [(z —2)* +(y — w)? '
+c¢‘il+6“i2, t=l,2,...,T. )

The quantities ¢, and i, are called indicator variables. Their values are i, =1 and i, =0 for
azimuth measurements and 4, =0 and i, =1 for elevation measurements. The regressor
variables are the tower coordinates z;, y,, and 2z, , and the components of the free model
parameter vector § are the burst-point coordinates z, y, and z.




4. COMPUTATION OF RANGE AND DEFLECTION

Let (z,y,2) be the coordinates of the burst point, (z,,¥,,2,) be the coordinates of the
gun, ¢, be the azimuth angle of the firing direction, and 7 be a unit vector in the direction
of firing defined by

- [cosd,
" =1 sing,, ] (16)
We define a range vector by
- z—1z,
= . 17
i EE ] (a7
The range is the length of the range vector, that is,
r= " ? " = [ (2 - zw)z + (y - yw)2 ]1/2 . (18)

The metric deflection is
d=[%XT ], =—(z—z,)sind, +(y — y,) cos4, . (19)
The angular deflection is
§ = arcsin(d/r) (20)
and the firing range is
=7 T =rcosb=(z —1,)cosd, +(y — y,) sind,, . (21)

To obtain accuracy estimates of the ranges and deflections, we use the variance
propagation formula. Let Pp be the variance-covariance matrix of the burst-point
coordinates. It is a 3X3 matrix and one of the outputs of the COLSAC utility routine. Then
the variance-covariance matrix of the range, metric deflection, and height of burst is

T
r O(r.d.2) [ ]r,d,z{] . (22)

'dz - z y’z) a(z)ylz)
Computing the derivatives one obtains the explicit formula
(z—z,)r (y—y,)/r O (x—2,)/r —sing, O
P, =] —sing, cos¢, O|Pg|(y—y,)/r cosé, O]. (23)
0 0 1 0 0 r2

The variance-covariance matrix of the range, angular deflection, and height of burst can be
obtained in the same manner and is




(z—z)r (y—vw)/r O (z—2z,)/r —(y—w)/r* O
Pr& = - (!I - ym)/"2 (z - 3')/1’2 0 PB (y - yw)/' (2 - 2.,)/1‘2 0]. (24)
0 0 1 0 0 1

The formula for the variance-covariance matrix of the firing range, metric deflection, and
height of burst is

cos$, sing, O cosg, —sing, 0
P, =|—sing, cosd, O |Pp|sing, cosg, O]. (25)
0 0 1 0 0 1

The formula for the variance-covariance matrix of the firing range, angular deflection, and
height of burst is

cosd, sing, O cosd, —(y—y,)/r? 0
P!&z =1 - (y - yw)/rz (z - zm)/"2 0 PB 8in ¢w (z - zu:)/r2 0f. (26)
0 0 1 0 0 1 '
5. EXAMPLES

We use the examples from Roberts (1991). The coordinates of four observation towers
and a gun are given in Table 1. (We have subtracted 2000 m from the z-coordinates and
10000 m from the y-coordinates for simplicity. Also, the azimuth of the firing direction is
modified by subtracting 35° because, according to Roberts (1991), a special coordinate system
was used for the measurements.) Table 2 lists observations of azimuths and elevations for
eight rounds labeled 11 through 18. The azimuths are again reduced by 35°. Results of
regression by the least-squares method (Egs. (7) and (8), or the equivalent Eqgs. (10), (11), and
(12) ) that were obtained with the utility program COLSAC are shown in Tables 3 and 4.
Table 3 contains the estimated burst-point coordinates, translated to a coordinate system
with the cannon location (z,,y,,2,) at the origin, and estimates e,, ¢,, and ¢, of the
standard deviations of the burst-point coordinates. All entries in Table 3 are in metres.
Table 4 contains estimated correlation coefficients between the burst-point coordinates.

The variance-covariance matrix Py of the coordinates is computed from the standard
deviations and the correlation coefficients cy by the formula

Pa=¢ CCy , (27)

where p; is an element of the matrix Pp and the indices ¢ and k may take the values z, y, or
z.

Identical numerical results were obtained with the utility program 3R, Release 1990, of
BMDP Statistical Software, Inc., that uses the constraints (15). This software also provides
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tests for the dependence of the parameters z, y, and z on data deviations. The tests
indicated that the dependence is essentially linear for the ranges of interest. This finding
justifies the use of the linearized law of variance propagation for the parameter-variance
estimates in the utility routine COLSAC and for the computation of deviations of range and
deflection by the formulas of Section 4.

For comparison, Tables5 and 6 display results obtained by solving the equation
system (10), (11), and (13) that correspond to Roberts’ solution and agree with the values
reported by Roberts (1991). We have supplemented his solution with estimates of coordinate
standard deviations and correlation coefficients.

The estimates of coordinates by the two methods differ only by less than 3 m,
indicating good quality and consistency of the data. (If the data contain large measurement
inaccuracies, then the differences between results from different estimation methods can be
significant.) However, the estimated standard deviations vary significantly. For instance,
consider the estimates of the standard deviations of angle observations that are listed in
Table 7. From the measurement technique, we expect equal uncertainties of azimuth and
elevation angle measurements, respectively. Consequently, in our analysis we assumed equal
accuracies and the analysis produced for each round one estimate of the standard deviation
of all angle measurements. In contrast, Roberts obtained different error estimates for
azimuth and elevation readings, respectively, because he used Eq. (13) instead of the least-
squares normal equations (12). The consequences are most apparent for Rounds 11, 15, and
16 with larger data scatter. It seems that Roberts’ method arbitrarily assigns large errors
either to azimuth or to elevation observations making the other observations appear
extremely accurate. We fail to see any justification for such an assignment of residuals.

Tables 8 through 11 list the results in terms of firing range, metric deflection, and
height of burst. The quantities in the table are given in metres and they were computed
from the coordinates of the burst points as described in Section 4. The results are also
shown in Figures 3 through 8.

Figures 3, 4, and 5 show the locations of all burst points calculated by the least-squares
method. Figures 6, 7 and 8 show the corresponding results obtained by Roberts’ method.
The accuracies of the burst-point coordinates are indicated by corresponding one-standard-
error ellipsoids. We observe in Figure 3 that Rounds 11 and 16 (denoted by "1" and "6",
respectively) stand out as less accurate. In contrast, Figure 6 shows that Roberts’ method
assigns only to Round 11 large errors of ground coordinates, whereas the location error
estimates of all other burst points are overly optimistic.
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Figure 8. Firing range and metric deflection
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6. TESTS FOR OUTLIERS

An important part of the treatment of burst-point observations is the detection of
gross observational errors. A theoretical basis for the detection with a prescribed confidence
level is not available because the problem is not linear and outlier detection theories have
been elaborated only for linear regression. One may therefore use statistical tests based on
linear regression as approximations or establish ad hoc tests specifically for the problem at
hand. We shall discuss both approaches.

Table 12 lists the standard angular deviations ey and the largest residuals of the angie
observations for each round (e, denotes the estimate of the standard angular deviation for ¢
and 6, and cy denotes the residual of an angle observation). It is obvious from this list that
Rounds 11 and 16 stand out as candidates with bad observations (see also Figure 3).
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Another less pronounced outlier might be among the observations of Round 15. A perusal of
Table 12 shows that good indicators for rounds with excessive residuals are the magnitudes
of ey and |c¢|m. One can, for instance, postulate for the present arrangement of towers
and cannon the following test for a set with outliers:

ey > 0.20° or | ¢yl max > 0.25° . (28)
For an outlier itself, one might use the same criterion:
|cyl > 0.25°. " (29)

To establish tests of this type, one must know what sizes of deviations to expect in a
normal operation, that is, the characteristics of the distribution of the observation errors.
Thus, the conditions (28) and (29) were derived by comparing results from the eight different

—-10 —
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Figure 7. Firing range and height by Roberts
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200.

rounds in Table 12. Without the possibility to compare between rounds (if only one or two
rounds have been measured with the same configuration of towers and cannon) we may use
the third column of Table 12 as test statistic. It is obvious that this statistic requires a
careful fine tuning of the outlier test, because a large error in one measurement increases the
residual |cylyy, as well as ¢y, and makes their ratio less distinct from those of error-free
measurements. After inspecting the data in the third column, one might postulate in the
present case the following condition as an error indicator:

|C¢Im‘x / €y > 1.70 . (30)

Linear regression theory derives a similar test. For a 5% confidence level with eight
observations and three parameters, an outlier is indicated if (see Barnett and Lewis 1978,
p. 262 ff.)

-_11 —



leglmax / €9 > 2.10 . (31)
Note that according to this linear theory, all observations would be accepted.

Outlier detection can be also based on repeated regression with one observation deleted
in turn (see Barnett and Lewis 1978, p. 244 fi.). This approach is not feasible if the number
of observations is large, but with the present eight observations per round, only a moderate
amount of additional calculations for the test are needed. The advantage of this test is that
it makes a single outlier stand out very pronounced. For illustrative purposes, we first show
in Table 13 all relative residuals of the Rounds 11, 15, and 16, that is, of those rounds that
are suspect of containing outliers according to the test (30). The observations Round 11-
Tower 3-Azimuth and Round 16- Tower 2-Elevation clearly stand out as suspect. The
observation Round 15- Tower $-Elevation is a borderline case and it should be kept in the
data set unless there are other indications of errors. We now repeat the regressions, deleting
one observation in turn. The idea behind this approach is that the estimated standard
deviation is significantly smaller if an outlier is removed from the set but changes only little
if a good observation is removed. It can be shown that in linear problems this approach is
equivalent to the maximum residual statistics test, Eq. (31), (see Barnett and Lewis 1978,
p. 265), but it accentuates the dichotomy between good and bad observations. Table 14 lists
the test statistics of the regressions by deleting one observation. Each entry in the table is
the ratio of the standard deviation ey of the full set to the standard deviation €y that is
obtained if the corresponding observation is removed from the set. Hence, the entries are the
relative magnitudes of the standard deviation estimates if the corresponding observations are
left in the data set. A large entry indicates a possible outlier. The suspect observations of
Round 11 and 16 with standard deviation ratios of 5.3 and 12.1, respectively, stand out more
prominently in Table 14 than in Table 13. Outliers might be identified in the present
regression problem, for instance, by the ad hoc test

?¢ / C¢ > 3. (32)

For Round 15, there is no prominent deviation from unity in Table 14. One might check the
observation Round 15-Tower 3-Elevation for correctness, but one would not discard the
measurement based only cn the Table 14. We have no such hesitations for the removal of
the two outliers for Rounds 11 and 16.

After removing the outliers from the observations of Rounds 11 and 16, we obtain new
burst-point coordinates and deviation estimates. The new values are listed in Tables 15 and
16 and shown in Figures 9, 10, and 11. The largest changes are in the deflection of Round 11
that bhas changed from —1.42m to +11.39 m and in the height of Round 16 that has
decreased by 14.17 m. The overall appearance of the burst-point dispersion has improved as
indicated by a comparison of Figure 3 with Figure 9.
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7. SUMMARY AND CONCLUSIONS

Measurements for the determination of burst-point coordinates consist of azimuth and
elevation angles. We compute the coordinates by minimizing the sum of the squares of the
residuals of all angle observations. The result is a set of burst-point coordinates that agrees
best with the observations in a least-squares sense. In this report, we describe the formalism
for the calculation of the coordinates and propose two utility routines for the numerical
solution of the regression problem. We also discuss methods for the detection of outliers in
the data sets.

The described method for the determination of burst-point coordinates differs from
that of Roberts (1991). His method does not minimize the sum of all squared residuals and
therefore is not a least-squares algorithm in the usual sense. We show and discuss in an
example the differing results that are obtained by the two algorithms. We conclude that
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Roberts’ algorithm should not be used except when accurate burst-point coordinates are not
needed.

In discussing tests for outliers we observe that tesiz that are based on the absolute size
of residuals require the least additional computing. However, they have the drawback that
the threshold for outlier detection depends on the setup of the experiments. For instance, a
radical change of the firing range or of the arrangement of observation towers would likely
require a change of the constants in the tests (28) and (30). A test that is less sensitive to
changes in the experiment is based on repeated regressions by deleting one observation in
turn. It requires more computation, but the increase of computing time is moderate as long
as the number of observation towers is not excessive. We propose to develop a dedicated
utility program that includes this test for the computation of burst-point coordinates. Such
a program could provide coordinate estimates and outlier tests likely in real time.
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Table 1. Tower and cannon coordinates.

z,m y, m z,m
Tower 1 1657.607 2801.626 32.13
Tower 2 1868.530 3870.487 13.30
Tower 3 1754.335 3094.383 4.77
Tower 4 883.790 1998.310 12.13
Cannon 1812.273 2475.803 0.00

Firing direction azimuth ¢, = 6° 26’
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Table 2. Observed asimuths and elevations.

Round Tower Azimuth ¢ Elevation ¢
11 1 - O° 38’ 18° 51/
2 -23° 52/ 19° 07/
3 —8°03 20° 04’
4 12° 37 14° 48’
12 1 —-0° 37 17° 45'
2 —25° 06' 18° 01/
3 —7°32 18° 50/
4 12° 55’ 13° 38'
13 1 —0°3% 18° 46’
2 —23° 47 19° 05’/
3 -7°C8 19° 45’
4 12° 35/ 14° 56/
14 1 —0° 42 17° 41’
2 —25° 18’ 17° 42'
3 —7°36' 18° 40/
4 13° 03’ 13° 41’
15 1 —0° 49 5° 35/
2 —24° 08! 6° 09’
3 -7°18 6° 45'
4 12° 26/ 4° 35’
16 1 —-0°43 5° 09’
2 —23° 41/ 6° 37’
3 —-7°03 5° 55/
4 12° 24/ 4° 19
17 1 —0° 55 5° 35’
2 —24° 24’ 6° o1’
3 —-7°28 6° 35'
4 12° 33/ 4° 39
18 1 —0°43' 5° 08’
2 —23° 57 5° 32’
3 —-7°15 5° 50
4 12° 3%/ 4°17
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Table 8. Estimates of burst-point coordinates.

Round -1z, e, Y=Yy e z2~2, e,
11 2530.75 | 42.65 283.92 10.62 952.65 17.43
12 2408.26 11.27 293.79 2.90 852.55 4.44
13 2547.62 10.84 296.12 2.66 952.83 441
14 2388.24 5.27 292.72 1.37 839.60 2.07
15 2529.40 16.39 286.87 4.06 303.23 3.90
16 2570.77 | 49.19 292.70 11.97 293.64 11.48
17 2501.56 8.87 284.22 2.22 297.19 2.12
18 2533.77 6.80 292.17 1.67 274.36 1.58

Table 4. Correlation coeflicients to 'i‘able s.
Round €y Caz c..
11 —0.45766 | 0.80939 —0.39097
12 —0.45865 0.78380 —0.38057
13 —0.44965 | 0.81068 —0.38446
14 —0.45897 0.77999 ~0.37980
15 —0.46651 0.42803 —0.21035
16 —0.46006 0.41707 ~0.20001
17 —0.46872 0.42178 —0.20888
18 —0.46006 | 0.39394 —0.19135
Table 5. Roberts’ estimates of burst-point coordinates.

Round z—3, e Y=V e, 2=z, e,
11 2532.65 67.28 283.58 16.63 953.28 22.77
12 2410.52 10.83 293.26 2.77 853.26 6.62
13 2544.35 7.86 296.54 1.92 951.75 6.51
14 2387.91 3.97 292.89 1.03 839.50 3.18
15 2530.91 2.70 286.61 0.67 303.38 9.00
16 2570.81 2.59 292.29 0.63 293.65 26.75
17 2501.98 3.93 284.16 0.98 297.24 4.75
18 2533.31 7.90 292.22 1.94 274.32 2.64
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Table 8. Correlation coefficients to Table 4.

Rourd Cay Css -
11 —0.46500 0.97787 —0.47923
12 —0.46531 0.50555 —0.24874
13 —0.45680 0.39813 —0.19151
14 —0.46545 0.38257 —0.18859
15 —0.46741 0.03052 —0.01504
16 —0.46074 0.00942 —0.00455
17 —0.46958 0.08326 -0.04131
18 —0.46079 0.27395 —0.13326

Table 7. Standard deviations of angle observations.

Least Sq. Roberts
Round C‘ and € C¢ €y

11 22.34 34.76' 5.18'

12 6.37' 6.04' 6.63'

13 5.61' 4.02' 6.54'

14 3.02 2.52' 3.45

15 8.48' 1.39/ 10.90/

16 24.79' 1.30/ 32.00

17 4.68 2.07 5.80

18 3.51 4.07' 3.08

Table 8. Estimates of firing range, metric deflection, and height of burst.
Round Firing range f e Deflection d e Height = e,

11 2546.63 41.85 —1.42 13.43 952.65 17.43
12 2426.02 11.05 22.10 3.64 852.55 4.44
13 2564.76 10.64 8.80 3.37 952.83 4.41
14 2406.01 5.17 23.28 1.71 839.60 2.07
15 2545.61 16.08 1.65 5.15 303.23 3.90
16 2587.38 48.28 2.81 15.24 293.64 11.48
17 2517.65 8.70 2.14 2.81 297.19 2.12
18 2550.54 6.67 6.43 2.12 274.36 1.58
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Table 8. Correlation coeflicients to Table 7.

Round €14 cp C4s
11 -0.69764 | 0.80855 —0.59528
12 -0.69136 | 0.78291 —0.57323
13 —0.69529 | 0.80987 —0.59373
14 -0.69018 | 0.77907 —0.57033
15 ~0.70427 | 0.42759 —0.31729
16 ~0.70357 | 0.41672 —0.30701
17 ~0.70345 | 0.42133 —0.31204
18 ~0.70133 | 0.39353 —0.29112

Table 10. Roberts’ estimates of firing range, metric deflection, and height of burst.

Round Firing range [ ey Deflection d e, Height = e,
11 2548.47 66.01 -1.98 21.12 953.28 22.77
12 2428.20 10.62 21.32 3.49 853.26 6.42
13 2561.55 7.72 9.59 2.44 951.75 6.51
14 2405.69 3.89 23.48 1.29 839.50 3.18
15 2547.08 2.64 1.23 0.85 303.38 9.00
16 2587.37 2.54 2.40 0.80 203.65 26.75
17 2518.06 3.85 2.03 1.24 297.24 4.75
18 2550.10 7.75 6.53 2.47 274.32 2.64

Table 11. Correlation coefficients to Table 10.

Round €4 s C4s
11 ~0.70343 0.97687 —0.72421
12 —0.69677 0.50499 -0.37219
13 ~0.70079 0.39774 —0.29351
14 ~0.69525 0.38213 —-0.28140
15 —0.70503 0.03049 —0.02266
16 —0.70430 0.00941 —0.00696
17 —0.70413 0.08317 —0.06183
18 ~0.70188 0.27367 —0.20259
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Table 12. Largest residuals.

Round ey, degr. |l max degr. eyl max/€y
11 0.372 0.684 1.836
12 0.106 0.154 1.454
13 0.093 0.136 1.459
14 0.050 0.068 1.351
15 0.141 0.223 1.577
16 0.413 0.786 1.903
17 0.078 0.120 1.540
18 0.058 0.072 1.226

Table 13. Relative residuals |c¢| /ey.

Round 11. ¢, =0.772°

Tower 1 Tower 2 Tower 3 Tower 4

Azimuth —0.6996 —0.8267 1.8365 —0.5456

Elevation 0.1848 —0.0391 —0.2917 0.1897
Round 15. ey = 0.141°

Tower 1 Tower 2 Tower 3 Tower 4

Azimuth —0.1041 0.0282 —0.0402 0.2228

Elevation 1.2984 —0.3067 —1.5768 0.8191
Round 16. ey = 0.413°

Tower 1 Tower 2 Tower 3 Tower 4

Azimuth 0.0496 0.0436 —0.0406 0.0317

Elevation 0.7996 —1.9027 0.7433 0.4252
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Table 14. Ratios of standard deviations ¢, / 2, .

Round 11.
Tower 1 Tower 2 Tower 3 Tower 4
Azimuth 0.971 1.477 5.323 0.957
Elevation 0.899 0.895 0.905 0.898
Round 15.
Tower 1 Tower 2 Tower 3 Tower 4
Azimuth 0.896 0.895 0.895 0.904
Elevation 1.224 0.906 1.641 0.976
Round 186.
Tower 1 Tower 2 Tower 3 Tower 4
Azimuth 0.895 0.895 0.895 0.895
Elevation 0.986 12.143 0.974 0.914

Table 16. New estimates of burst-point locations.

Round | Firing range f e Deflection d e, Height 2 e, ey
11 old 2546.63 41.85 —1.42 13.43 952.85 17.43 22.34'
11 new 2552.04 7.92 11.39 2.74 953.38 3.29 4.20/
16 old 2587.38 48.28 2.81 15.24 293.64 11.48 24.7¢'
16 new 2587.60 3.98 2.34 1.26 279.47 1.07 2.04'
Table 18. New correlation coefficients to Table 15.
| Rcand € e C4s
11 —0.61295 0.80925 —0.53645
16 —0.70370 0.34778 —0.25203
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